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Abstract

The degree/diameter problem is to determine the largest graphs or digraphs of given max-
imum degree and given diameter. This paper deals with directed graphs. General upper
bounds, called Moore bounds, exist for the largest possible order of such digraphs of max-
imum degree d and given diameter k. It is known that simulated annealing and genetic
algorithm are effective techniques to identify global optimal solutions.

This paper describes our attempt to build a Hybrid Simulated Annealing and Genetic Algo-
rithm (HSAGA) that can be used to construct large digraphs. We present our new results
obtained by HSAGA, as well as several related open problems.

Key Words: digraphs, Moore bound, diameter, out-degree, Simulated Annealing, Genetic
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1 Introduction

1.1 Basic concepts

In this paper we consider only finite directed graphs. An interconnection network can be mod-
elled as a digraph, where each element can be represented as a vertex and the directed connection
between two vertices is described by an arc. A digraph has vertex set V (G). The number of
vertices is called the order n of the digraph, and the number of arcs from a vertex is called
the out-degreed of the vertex. The diameter k is defined to be the length of the largest of the
shortest paths between any two vertices. From now on, we denote by G(n, d, k) the set of all
digraphs G of order n, maximum out-degree d, and given diameter k. In this paper we deal with
the degree/diameter problem [6].
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• Degree/diameter problem: Given natural numbers d and k, find the largest possible num-
ber of vertices nd,k in a digraph of maximum out-degree d and diameter ≤ k.

Let u be an arbitrary vertex of G and define ni to be the number of vertices at distance at most
i from u. Then we count the maximum number of vertices ni at distance i from u, ni ≤ di, for
0 ≤ i ≤ k, and consequently,

nd,k =
k∑

i=0

ni ≤ 1 + d + d2 + . . . + dk

=

{
dk+1−1

d−1 if d > 1
k + 1 if d = 1

(1)

The right-hand side of (1), denoted by Md,k, is called the Moore bound for digraphs, which is
the largest possible order (i.e., the number of vertices) of a digraph G of maximum out-degree
d and diameter k. If the equality sign holds in (1) then the digraph is called a Moore digraph.
It is well known that Moore digraphs of degree d, diameter k do not exist for d ≥ 2 and k ≥ 2.
This was first proved by Plesńık and Znám [11], and in a simpler way by Bridges and Toueg [1]
in 1980.

The remainder of this paper is organized as follows. In Section 2, some open problems regarding
near-Moore digraphs will be discussed. In Section 3, we will introduce several optimization
algorithms, such as Simulated Annealing and Genetic Algorithms, also we would like to propose
an optimization algorithms method, called Hybrid Simulated Annealing and Genetic Algorithm
(HSAGA). In Section 4, we present some outputting results that we have obtained so far using
HSAGA. Finally, further research will be described in Section 5.

2 Open Problems

2.1 Relaxed Moore Digraphs

It is well known that Moore digraphs exist only for d = 1 or k = 1. Consequently, we are
interested in studying the existence of large digraphs which are in some way ‘close’ to Moore
digraphs. Currently, we are considering relaxing in turn the parameters, namely, the order Md,k,
the out-degree d, and the diameter k, in order to get close to Moore digraphs.

Definition 2.1 A digraph G is a (n,S+, E+)-digraph if G has order n, out-degree sequence S+

and out-eccentricity sequence E+.

2.1.1 Relaxing the Order

Currently, most research is focusing on finding the best lower and upper bounds of large digraphs,
in order to obtain large digraphs, of orders ‘close’ to the Moore bound with maximum out-degree
and given diameter. This kind of large digraph we will call the “order-relaxed Moore digraph”.

Definition 2.2 A digraph G is an order-relaxed Moore digraph, denoted (n, d, k)− digraph, if
G has given diameter k, maximum out-degree d of order n = Md,k − δ, δ > 0.



The problem of obtaining an order-relaxed Moore digraph is as follows.

Problem 2.1 What is the minimum value of δ of an order-relaxed Moore digraph with maximum
out-degree d and given diameter k?

2.1.2 Relaxing the Out-degree

The problem of relaxing the out-degree to get close to Moore digraphs is still quite open. Here
we would like to find digraphs which are ‘close’ to Moore digraphs, by relaxing the maximum
out-degree d. This kind of large digraph will be called an “out-degree-relaxed Moore digraph”.

Definition 2.3 A digraph G is an out-degree-relaxed Moore digraph, denoted (Md,k,S+, k) −
digraph, if it has Md,k vertices and given diameter k, and S+ = (dt0 , (d+1)t1 , (d+2)t2 , . . . , (d+
m)tm).

Currently, we are dealing with a special out-degree sequence S+ in the (Md,k,S+, k)− digraph
when the digraph G has β vertices of out-degree larger than d, where t1 + t2 + . . . + tm = β,
minimum out-degree d and maximum out-degree d+m, with 0 < m ≤ Md,k−d−1. Furthermore,
this special S+ can be described as (dMd,k−β, (d + 1)t1 , (d + 2)t2 , . . . , (d + m)tm).

The number of extra arcs is E = t1 +2t2 + . . .+mtm. We are interested not only in the number
of extra arcs E, but in the distribution of these extra arcs.

For the out-degree-relaxed Moore digraphs, we are interested in the following problems.

1. What is the minimum value of E of an out-degree-relaxed Moore digraph with Md,k vertices
and given diameter k?

2. What is the minimum value of β in terms of the E, if G is an out-degree-relaxed Moore
digraph and β 6= 1? One extreme case is when β = 1, that is, when the digraph has one
vertex of maximum out-degree d + E, and the rest of the vertices all have out-degree d.
The corresponding out-degree sequence can be described as S+ = (dMd,k−1, d + E) and
the problem can be restated as “What is the minimum value of β to what is the minimum
value of d + E”?

3. What is the minimum value of the maximum out-degree d+m, if G is an out-degree-relaxed
Moore digraph and E 6= β? One extreme case is E = β, that is, the digraph has β vertices
of out-degree d + 1, and the rest of the vertices all have out-degree d. The corresponding
out-degree sequence is S+ = (dMd,k−β, (d+1)β). Thus instead of investigating the minimum
value of maximum out-degree d + m, we can investigate the minimum value of β.

In particular, we are interested in the problems of obtaining out-degree-relaxed Moore digraph
for certain special sequences S+.

Problem 2.2 What is the minimum value of E of an out-degree-relaxed Moore digraph with
Md,k vertices and given diameter k?

Problem 2.3 What is the minimum value of β in terms of E, if G is an out-degree-relaxed
Moore digraph with Md,k vertices and given diameter k, and β 6= 1?



Problem 2.4 What is the minimum value of β in terms of E, if G is an out-degree-relaxed
Moore digraph with Md,k vertices and given diameter k, and E = β?

Problem 2.5 What is the minimum value of maximum out-degree d+m, if G is an out-degree-
relaxed Moore digraph with Md,k vertices and given diameter k, and E 6= β?

Problem 2.6 What is the minimum value of maximum out-degree d+E, if G is an out-degree-
relaxed Moore digraph with Md,k vertices and given diameter k, and β = 1?

2.2 Relaxed Digraphs

Currently, there are usually large gaps between the best current lower and upper bounds of order
nd,k. Let ld,k represent the current best lower bound for the order nd,k, and let ud,k represent the
current best upper bound for nd,k. We are interested in improving the lower bounds to decrease
these gaps by obtaining digraphs of order equal to values between ld,k and ud,k, given diameter
and maximum out-degree. However, currently we are unable to obtain these digraphs and so
we begin by obtaining large digraphs, of orders equal to values between ld,k and ud,k and having
a given diameter k, and relaxed out-degree d. Obtaining these large digraphs is expected to
produce structures which may be useful to utilise in the construction of new digraphs in order
to improve the lower bounds for the maximum order of digraphs.

2.2.1 Digraphs of Order between ld,k and ud,k

We tabulate in Tables 1, 2 and 3, the outstanding potential values of orders larger than those
obtained so far, for diameter k up to 10, and for maximum degree d = 2, 3 and 4. The ‘Largest
Known Order’ column gives the order of the current largest known digraph of the given maximum
out-degree d and diameter k. The possible larger orders, between the current known lower
bounds and current best upper bounds, are tabulated under the heading ‘Possible Larger Values
of Order’. Furthermore, similar tables could also be made for degrees d > 4.

k Largest Known Order Possible Larger Values of Order
2 6 −
3 12 −
4 25 26 - 28
5 50 51 - 60
6 100 101 - 124
7 200 201 - 252
8 400 401 - 508
9 800 801 - 1,020
10 1,600 1,601 - 2,044

Table 1: Possible values of n2,k for 2 ≤ k ≤ 10.



k Largest Known Order Possible Large Values of Order
2 12 −
3 36 37 - 38
4 108 109 - 119
5 324 325 - 362
6 972 973 - 1,091
7 2,961 2,962 - 3,278
8 8,748 8,749 - 9,839
9 26,244 26,245 - 29,522
10 78,732 78,733 - 88,571

Table 2: Possible values of n3,k for 2 ≤ k ≤ 10.

k Largest Known Order Possible Large Values of Order
2 20 −
3 80 81 - 84
4 320 321 - 340
5 1,280 1,281 - 1,364
6 5,120 5,121 - 5,460
7 20,480 20,481 - 21,844
8 81,920 81,921 - 87,380
9 327,680 327,681 - 349,524
10 1,310,720 1,310,721 - 1,398,100

Table 3: Possible values of n4,k for 2 ≤ k ≤ 10.

2.2.2 Relaxing the Out-degree

We begin this subsection by defining a (n,S+, k)− digraph, where ld,k < n ≤ ud,k, to represent
a digraph of order n, with given diameter k, and a relaxed maximum out-degree d.

Definition 2.4 A digraph G is a out-degree-relaxed digraph, denoted by (n,S+, k) − digraph,
if G has n vertices, ld,k < n ≤ ud,k, given diameter k, and S+ = (dt0 , (d+1)t1 , (d+2)t2 , . . . , (d+
m)tm).

Currently, we are dealing with special out-degree sequences S+ in the (n,S+, k)− digraph. Let
G have β vertices of out-degree larger than d, (t1 + t2 + . . . + tm = β), minimum out-degree
d and maximum out-degree d + m, 0 < m ≤ n − d − 1. The out-degree sequence S+ can
then be described as (dn−β, (d + 1)t1 , (d + 2)t2 , . . . , (d + m)tm). The number of extra arcs in a
(n,S+, k)− digraph is E = t1 + 2t2 + . . . + mtm.

Problem 2.7 What is the minimum value of E, if G is a (n,S+, k)− digraph with n vertices,
ld,k < n ≤ ud,k, and given diameter k?

3 Optimization Algorithms

3.1 Simulated Annealing

The algorithm is based upon that of Metropolis et al. [8], which was originally proposed as a
means of finding the equilibrium configuration of a collection of atoms at a given temperature.



See also Cerny [2]. The connection between this algorithm and mathematical minimization was
first noted by Pincus [10]. However, it was Kirkpatrick et al. [5] who proposed that it form the
basis of an optimization technique for combinatorial (and other) problems.

Simulated Annealing Simulated Annealing (SA) is a means of finding good solutions to com-
binatorial optimization problems. The basic operation in this technique is a move. A move
is a transition from one element of the solution space to another element. In this report, a
move means inserting an arc between two randomly generated nonadjacent vertices x and y and
removing one of the arcs from x, depending on their cost. The cost of a vertex x, denoted by
c(x), is the number of unique vertices reached by x at most in k steps. Assume m and n are out-
neighbours of the vertex x and c(m) is less than c(n). If c(y) more than c(m), we must remove
the arc between x and m, and insert an arc from x to y. Otherwise, we accept the arc (x → y)
with probability = e−4E/T , where T is a global time-varying parameter called the temperature
and 4E is the increase in cost (i.e., c(y)− c(m)) that would result form this prospective move.

The pseudo code [13] for our implementation is given below. In the inner loop, move is selected
at random. A limited number of move are accepted at each temperature level. For better results
in terms of small diameters, we would use larger numbers of move. In our study, we use 20|V (G)|
as the maximum number of moves. Furthermore, there is a limit on the number of attempted
moves at each temperature. For each accepted move, we want to attempt no more than 60
moves. Once the maximum number of accepted moves or the maximum number of attempted
moves has been reached, the temperature is lowered and a new iteration begins.

Simulated Annealing(G)
temp = initial_temp = 1.0
Cool_rate = 0.95
Max_moves = 20 * |V| // maximum number of moves
Max_attempted_moves = 60 * max_moves // maximum number of attempted moves
Max_frozen = 100
frozen = 0
randomly create a digraph based on given order and out-degree
While (frozen <= Max_frozen)

moves = 0 // number of moves
attempted_moves = 0 // number of attempted moves
While ((moves <= Max_moves) and (attempted_moves <= Max_attempted_moves))

increase attempted_moves
randomly select two non-adjacent vertices
If the random vertices are accepted

do move() and increase moves
// new digraph’s diameter is equal to required diameter k
If (k(G new) == k required)
return the improved solution, and end Simulated Anneal(G)

End if
End if

End while
temp = temp * Cool_rate
If(attempted_moves > Max_attempted_moves)



increase frozen
End if

End while
End Simulated Annealing(G)

3.2 Genetic Algorithm

Genetic Algorithm (GA) is a search technique for global optimization in a complex search space.
As the name suggests, GA employs the concepts of natural selection and genetics [9].

In GA, search space is composed of all the possible solutions to the problem. A solution in
the search space is represented by a sequence of 0′s and 1′s. This solution is referred to as the
chromosome in the search space. Each chromosome has an associated objective function value
called fitness value. A good chromosome is one that has high/low fitness value depending on the
problem (maximization/minimization). A set of chromosomes and the associated fitness values
is called the population.

There are five basic functions inside of GA. Fitness is used to evaluate the fitness value of each
chromosome in the current population. Selection is used to choose two parent chromosomes
from the current population according to their fitness values. Crossover is used to cross over
the two parents to form two new offspring based on Crossover rate, which is the odds of a parent
being selected for the crossover operation. Actually, if no crossover is performed, then offsprings
are created as the exact copies of parents. Furthermore, the Mutation is used to mutate new
offspring at each position in chromosome in terms of Mutation rate, which specifies the odds
that a given position in a offspring will be mutated. Finally, Test is used to evaluate whether
or not the new offspring satisfies the end condition.

The pseudo code of the general GA procedure is given below.

Genetic Algorithm(G)
Crossover_rate = 0.95, Mutation_rate = 0.03
Curr_pupulation_size = 200
Create an empty new population
Found_soulation = false
do Initial_Population() // Randomly generate a current population with

200 chromosomes.
While (Found_soulation = false)
do Fitness()
While (Curr_population_size < 0)
do Selection()
do Crossover()
do Mutation()
If (Test() = true)

Return the improved solution
Found_solution = true // End Genetic Algorithm(G)

Else (Test() = false)
do Accepting() // Place new offsprings in the new population.
Curr_population_size = Curr_population_size - 2



End if
End while
do Replace() // Use new generated population to replace the

current population for a further run of the GA.
Curr_population_size = 200

End while
End Genetic Algorithm(G)

3.3 Hybrid Simulated Annealing and Genetic Algorithm

We introduce an optimization algorithm method: the Hybrid simulated annealing and genetic
algorithms (HSAGA). The general idea of HSAGA in our study is that an initial digraph is
created at the beginning, and used as the initial digraph input into SA. SA will terminate if the
generated solution is satisfied in terms of given diameter after move, otherwise, the population of
candidate solutions will be obtained. Furthermore, the set of elite individuals of the population
is chosen by a selection procedure of GA according to their evaluation fitness values, following
genetic operations consisting of crossover and mutation. The basic processes of HSAGA are
shown in Figure 1, and the details of each process are described below.

(a) Input parameters into our program, such as the out-degree, required minimum diameter,
as well as cooling rate, which controls the decreasing of temperature, and population’s size,
that is, the numbers of chromosome, and so on.

(b) Create an initial base digraph in terms of given out-degree and diameter by using the
construction technique, known as the generalised Kautz digraphs. Every digraph is repre-
sented by an adjacency matrix.

(c) If the current digraph is an improved digraph in terms of given diameter, then we terminate
our process and output the result.

(d) Otherwise, put the current digraph into the method called SA. During its processing, SA
will execute move to optimize the current digraph, We have a valuation function to test
whether or not the diameter of the generated digraph matches the desired given diameter.
If yes, then the process will stop and go to Step c. Otherwise, it will create a chromosome,
based on its fitness value, which is represented by the number of reached central vertices
by the current generated digraph, then store each chromosome into the population. If
we fix the population size as 200, HSAGA will obtain a population of the first 200 best
chromosomes, based on their fitness values.

(e) Input the current population into GA functions consisting of selection, crossover and mu-
tation, in order to obtain an improved solution, that is, a digraph whose diameter is equal
to the given diameter. It is well known that GA never guarantees to generate a best solu-
tion, no matter what is the running time. So if GA could not give us an improved digraph
at the end of the running time, we will select a current best chromosome, and input it
back to SA, until the improved solution is found with respect to the given diameter.



Figure 1: Basic structure of HSAGA.



4 Results

In order to make comparisons with other important optimization algorithms, including SA, GA,
and HSAGA, which could be used to solve the degree/diameter problems, we have performed
various experiments. The best experimental results that we have obtained are given in Table 4.
A central vertex, denoted by c, is a vertex of eccentricity equal to the radius of the digraph. It
is easy to observe that neither of the SA and GA has been effective for this problem. In other
words, SA and GA have not given us the minimum diameter and maximum number of central
vertices for orders greater than 10. However, combining SA and GA in the hybrid method has
given more encouraging results.

SA GA HSAGA
n c k c k c k
1 0 0 0 0 0 0
2 2 1 2 1 2 1
3 3 1 3 1 3 1
4 4 2 4 2 4 2
5 4 3 5 2 5 2
6 6 2 6 2 6 2
7 7 3 7 3 7 3
8 8 3 8 3 8 3
9 9 3 9 3 9 3
10 9 4 9 4 10 3
11 7 4 6 4 11 3
12 5 4 5 4 12 3
13 12 5 13 4 13 4
14 14 4 14 4 14 4
15 13 5 14 5 15 4
16 11 5 14 5 16 4
17 10 5 9 5 17 4
18 8 5 10 5 18 4

Table 4: The number of central vertices and the minimum values of diameter k obtained from
our tests when d = 2 and n ≤ 18.

5 Out-Degree-Relaxed Moore Digraph

Using HSAGA, we have obtained out-degree-relaxed Moore digraphs of diameter 2 ≤ k ≤ 6 and
most, but not all, vertices with out-degree d = 2 and with order equal to the Moore bounds
M2,k. For example, there are a few out-degree-relaxed Moore digraphs are listed below. (see
Figure 2 - 4). Surprisingly, we found five non-isomorphic out-degree-relaxed Moore digraphs
with the same out-degree sequences, diameter k = 3 and order 15, but with different in-degree
sequences (see Figure 4).



Figure 2: G ∈ G(7, (26, 3), 2).

Figure 3: G ∈ G(15, (212, 33), 3).



(a) G1 (b) G2

(c) G3 (d) G4

(e) G5

Figure 4: Five non-isomorphism digraphs ∈ G(15, (214, 5), 3).



In order to summarise our results concerning our out-degree-relaxed Moore digraphs and current
results on order-relaxed Moore digraphs, we have created Table 5. In this table, we list current
largest digraphs of order n with its current best δ by relaxing the order, and out-degree sequence
S+ with its current minimum number of extra arcs E and current minimum β, obtained by
relaxing the out-degree d = 2 and given diameter 2 ≤ k ≤ 6.

Order-Relaxed Out-degree-Relaxed

k n d δ Md,k S+ E β

2 6 2 1 7 (26, 3) 1 1

3 12 2 3 15
(212, 33) 3 3
(214, 5) 3 1

4 25 2 6 31
(227, 34) 4 4
(214, 10) 8 1

5 50 2 13 63 (257, 36) 6 6

6 100 2 27 127 (2118, 39) 9 9

Table 5: The current largest digraphs of order n with current best δ by relaxing the order, and
the current minimum number of extra arcs E, current minimum β, with out-degree sequences
S+, for d = 2 and given 2 ≤ k ≤ 6.

6 Out-Degree-Relaxed Digraphs

Using HSAGA, we have also obtained some large digraphs with order n, for example, n = 26, 27
and 28, that is, l2,4 < n ≤ u2,4, and given diameter k = 4, by relaxing out-degree d = 2 (see
Figure 5 - 10).

Figure 5: G ∈ G(26, (224, 32), 4). Figure 6: G ∈ G(26, (225, 5), 4).



Figure 7: G ∈ G(27, (224, 33), 4). Figure 8: G ∈ G(27, (226, 6), 4).

Figure 9: G ∈ G(28, (225, 33), 4). Figure 10: G ∈ G(28, (227, 8), 4).



To summarize, we list the current minimum extra arcs E, current minimum β, and the corre-
sponding out-degree sequence S+ in Table 6.

Out-degree-Relaxed

k n S+ E β

4 26
(224, 32) 2 2
(225, 5) 3 1

4 27
(224, 33) 3 3
(226, 6) 4 1

4 28
(225, 33) 3 3
(227, 8) 6 1

Table 6: The current minimum number of extra arcs E, current minimum β, and its correspond-
ing S+, with respect to the out-degree, where d = 2, k = 4 and n, such that l2,4 < n ≤ u2,4.

7 Further Research

In preliminary results, we have obtained some out-degree-relaxed Moore digraphs and some out-
degree-relaxed digraphs of orders between l2,4 and u2,4, by using HSAGA. In order to improve
its efficiency, we shall next modify our HSAGA to Parallel Hybrid Simulated Annealing and
Genetic Algorithm, denoted by PHSAGA, so that the issue of time consumed for the running of
HSAGA can be solved.

In addition, it may be possible to implement PHSAGA to deal with undirected graphs as well,
that is, finding degree-relaxed Moore graphs, in order to get close to Moore graphs. We also
consider to search for large graphs of orders between the best current lower and upper bounds for
the order n∆,D, with maximum degree ∆ and given diameter D, by using PHSAGA combined
with other construction techniques, to improve the current lower bounds of undirected graphs.
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